

lkmonitor Architecture Review

 lkmonitor Architecture Review

lkmonitor Architecture Review

1. Introduction

lkmonitor is a Gnome application, meaning that lkmonitor employs the features offered by
the glib and gtk libraries to support most of its capabilities.

lkmonitor shows information regarding to various system characteristics, as CPU or
memory usage. This information is obtained from the /proc pseudo-file system. lkmonitor's
main task is to read data from the aforementioned files, parse it and extract the relevant
information. Under this point of view, lkmonitor performs as a simple file reader (Figure
1).

Figure 1 Basic lkmonitor functioning cycle

Although the description of the procfs internals is not the goal of this document, it's
important to know how it works.

2. The procfs pseudo-filesystem

procfs is a pseudo-filesystem, that is, the files under /proc do not exist physically in the
hard drive, but the information they contain is calculated on demand. As the rest of the
filesystems in Linux, procfs is supported by the VFS (Virtual File System), a kernel layer
that offers a level of abstraction when we work with filesystems, handling the differences
between them while offering a common interface.

Although other UNIX - like operating systems also provide a /proc filesystem (BSD, for
example), the format is different between them. While Linux offers a plain text based
format for the majority of its files, FreeBSD and others offer less information in text format
and more in binary format. The first case suits best shell scripting, the second being closer
to programming.

Both general information and process-specific information can be found under /proc. Linux
distinguishes the different types of information through the i-node number. Under Linux,
this i-node number is a 32-bit integer, whereas a PID (Process ID) is represented with a 16-

 1

 lkmonitor Architecture Review

bit integer. Linux therefore splits the i-node number in two 16-bit halves, the higher-order
bits interpreted as the PID which the information is being given about, and the lower-order
bits as the type of information to be given. As a PID of zero is not valid, it's used to mark
those files that contain general information about the system.

Figure 2 shows what the kernel does when making a cat /proc/cpuinfo (for example). The
process created by the shell first asks for information by reading the file. VFS catches the
query and established that the file to be read is one of the pseudo-files in the procfs. The
procfs filesystem then looks up in the kernel tables for the information required by the
reading process.

Figure 2 Kernel response to the reading of a file in procfs

Consulted kernel data structures depend on the kind of information desired (global,
specific, about the CPU, about a single process, etc.). The process' buffer is filled with the
collected data

The single most important fact about the data collection is that it's absolutely transparent
under an external point of view.

3. lkmonitor architecture

lkmonitor implements two different components as two separate threads: the main thread
controls the event loop and the collector thread obtains the updated information. Both
threads share some data structures, but the gtk objects are the most important. gtk library
does not offer a secure concurrent access in multithreading, making synchronism and
mutual exclusion necessary in order to access objects like labels, panels or buttons in a
secure way.

Fortunately enough, gtk offers two primitives to lock threads and implement critical
sections. Those are gdk_threads_enter() and gdk_threads_leave(). This avoids the
possibility of the main thread accessing the objects while the collector thread is updating
the information on them. The collector thread behaviour is shown in Figure 3.

 2

 lkmonitor Architecture Review

Figure 3 Collector thread behaviour

lkmonitor is an application that show information and updates it constantly. The collector
loop is simple: it determines if the shown information is dynamic (e.g., the CPU panel has
static info), obtains the updated info from procfs and shows it in the main window. Then,
the loop starts again.

As seen in Figure 4, the application starts creating some data structures where the retrieved
information is going to be stored. Afterwards, the threading subsystem is initialized so as to
allow the use of the thread-locking primitives. Then, the main window is created, the
collector thread is launched and the event control loop is started.

 3

 lkmonitor Architecture Review

Figure 4

The collector thread calls to the update function family (update_cpu, update_mem, etc.),
which updates the information. The data is first obtained with the get_*_info functions.

 4

 lkmonitor Architecture Review

Those functions do the actual work of reading and parsing the file in order to extract the
related information. When this work is done, the update functions avoid the unwanted
access to the gtk objects locking the other threads by means of gtk_threads_enter(). Once
the window is updated, the critical section is unlocked.

The behaviour of the update functions is shown in Figure 5.

Figure 5 Behaviour of the update family of functions

 5

